Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurointerv Surg ; 10(1): 34-38, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28044009

RESUMO

BACKGROUND: Despite significant advancements in the procedural efficacy of mechanical thrombectomy in patients with ischemic stroke in recent years, there still remains a portion of the population that does not achieve good recanalization. The reasons for this may be varied. We hypothesized that static friction between the clot and the vessel, or catheter wall might contribute to the difficulty in removing the clot. OBJECTIVE: To determine if there is a relationship between clot composition and the resistance to sliding (friction) which might contribute to resistance to clot removal. METHODS: As clot composition can vary significantly, we investigated five different types of clot in order to measure their respective frictional properties. To do this, a custom-made testing apparatus was created, consisting of various replaceable low-friction surfaces on which the clots could be placed. The surface was then gradually tilted until the clots began to slide; the angle at which this occurred is related to the coefficient of friction of the clots. The experiment was repeated on a bovine aortic surface in order to confirm the results. RESULTS: We found that fibrin-rich clots (<20% red blood cell content) have a significantly higher coefficient of friction than clots with a red blood cell content >20%. This result was confirmed by repeating the experiment on a bovine aortic surface as a representation of the interaction between clots and the arterial wall. CONCLUSIONS: The friction properties of clots were found to be related to the content ratio of fibrin to red blood cells. Future imaging techniques that could show fibrin and red blood cell content might help us to predict the 'stickiness' of a clot.


Assuntos
Coagulação Sanguínea/fisiologia , Eritrócitos/fisiologia , Fibrina/análise , Fibrina/fisiologia , Fricção/fisiologia , Trombectomia/métodos , Animais , Ovinos , Trombose/fisiopatologia
2.
J Mech Behav Biomed Mater ; 71: 23-31, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28259025

RESUMO

Venous grafts have been used to bypass stenotic arteries for many decades. However, this "gold standard" treatment is far from optimal, with long-term vein graft patency rates reported to be as low as 50% at >15 years. These results could be a result of the structural and functional differences of veins compared to arteries. In this study we developed a new protocol for manufacturing reinforced fresh veins with a decellularized porcine arterial scaffold. This novel method was designed to be replicated easily in a surgical setting, and manufactured reinforced constructs were robust and easier to handle than the veins alone. Furthermore, we demonstrate that these Reinforced Venous-Arterial Conduits have comparable mechanical properties to native arteries, in terms of ultimate tensile strength (UTS) (2.36 vs. 2.24MPa) and collagen dominant phase (11.04 vs. 12.26MPa). Therefore, the Reinforced Venous-Arterial Conduit combines the benefits of using the current gold standard homogenous venous grafts composed of a confluent endothelial surface, with an "off-the-shelf" decellularized artery to improve the mechanical properties to closely mimic those of native arteries, while maintaining the self-repairing characteristics of native tissue. In conclusion in this study we have produced a construct and a new technique that combines the mechanical properties of both a natural vein and a decellularized artery to produce a reinforced venous graft that closely mimics the mechanical response of an arterial segment.


Assuntos
Artérias/fisiologia , Prótese Vascular , Engenharia Tecidual , Alicerces Teciduais , Veias/fisiologia , Animais , Aorta , Colágeno , Suínos
3.
J Mech Behav Biomed Mater ; 57: 321-33, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26875146

RESUMO

In cases of severely diseased mitral valves (MV), the required treatment is often valve replacement. Bioprosthetic and stentless replacement valves are usually either fully or partially composed of animal derived tissue treated with a decellularization process, a cross-linking process, or both. In this study, we analysed the effects of these treatments on the fatigue properties of porcine MV chordae tendineae (CT), as well as on the calcification of the CT using an in vitro technique. CT were tested in 4 groups; (1) native, (2) decellularized (DC), (3) decellularized and cross-linked with glutaraldehyde (DC-GTH), and (4) decellularized and cross-linked with 1-ehtyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)(DC-EDC). CT were tested in both uniaxial tension, and in fatigue at 10MPa peak stress (1Hz). The cycles to failure (mean±SD) for the four groups are as follows; Native- 53,397±55,798, DC- 28,013±30,634, DC-GTH- 97,665±133,556, DC-EDC- 318,601±322,358. DC-EDC CT were found to have a slightly longer fatigue life than the native and DC groups. The DC-EDC group also had a marginally lower dynamic creep rate, meaning those CT elongate more slowly. After in vitro calcification, X-ray microtomography was used to determine relative levels of calcification. The DC-EDC and DC-GTH groups had the lowest volume of calcific deposits. Under uniaxial testing, the ultimate tensile strength (UTS) of the DC-GTH CT was statistically significantly reduced after calcification, while the UTS was relatively unchanged for the DC-EDC group. Overall, these results indicate that a treatment of decellularization plus cross-linking with EDC may improve the fatigue life of porcine CT, reduce the rate of elongation, and help the CT resist the negative effects of calcification. This may be a preferable treatment in the preparation of porcine MVs for the replacement of diseased MVs.


Assuntos
Calcificação Fisiológica , Cordas Tendinosas/citologia , Cordas Tendinosas/fisiologia , Valva Mitral/citologia , Valva Mitral/fisiologia , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Cordas Tendinosas/diagnóstico por imagem , Humanos , Valva Mitral/diagnóstico por imagem , Suínos , Microtomografia por Raio-X
4.
Acta Biomater ; 24: 193-200, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26087111

RESUMO

Mitral valve prolapse is often caused by either elongated or ruptured chordae tendineae (CT). In many cases, rupture is spontaneous, meaning there is no underlying cause. We hypothesised that spontaneous rupture may be due to mechanical fatigue. To investigate this hypothesis, we tested porcine marginal CT: in uniaxial tension, and in fatigue at a range of peak stresses (n=12 at 15, 10 and 7.5MPa respectively, n=6 at 5MPa). The rupture surfaces of failed CT were observed histologically, under polarised light microscopy, and SEM. The cycles to failure for 15, 10, 7.5 and 5 MPa peak stresses were: (average±SD): 5077±4366, 49513±56414, 99927±108908, 197099±69103. A Weibull plot was constructed and from this, the number of cycles at 50% probability of failure was established in order to approximate the fatigue life, which was found to be 2.43MPa at 10 million cycles. The rate of creep increases exponentially with increasing peak stress. Under histological examination it was observed that CT which have been fatigued at low stress partially lose their organised collagen structure and can sustain micro-cracks that can be linked to increases in the creep rate. Furthermore our SEM images closely matched descriptions from the literature of spontaneous in vivo rupture. In conclusion, we believe that the mechanical test results we present strongly suggest that spontaneous chordal rupture and chordal elongation in vivo can be caused by mechanical fatigue.


Assuntos
Valva Mitral/fisiopatologia , Modelos Cardiovasculares , Fadiga Muscular , Miocárdio , Estresse Mecânico , Animais , Suínos
5.
J Biomech ; 47(2): 334-40, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24326099

RESUMO

The mitral valve annulus is a complex and irregular component of the mitral valve apparatus, serving both a structural and sphincteric role. We have sought to determine the mechanical properties of the mitral valve annulus segmentally. Twenty porcine hearts were dissected to isolate the annulus. The annulus was segmented into four sections: anterior, posterior, and left and right commissural sections. Ten of these were tensile tested to failure as control samples. The remaining ten were digested in order to fully isolate the annulus from the myocardium, and subsequently tensile tested to failure. Histological samples of each segment were analysed to determine collagen/annular content. Whole segments of muscular annulus were tensile tested to failure; the stress and strain at failure and location of failure were determined in these larger specimens. Our results demonstrated that the anterior annulus is stiffer than the posterior segment by a factor of approximately 27 at a 2% strain level, and approximately 13 at a 6% strain. There is a trend in the results that identifies that the muscular annulus is stiffest at the right commissural segment, while the posterior segment tends to be the least stiff. The stiffness of the samples can be correlated with the area associated with the dense collagen annulus using histological analysis. Finally, the weakest section of the mitral valve annulus was identified as the intersection of the right commissural segment and the posterior segment.


Assuntos
Valva Mitral/anatomia & histologia , Valva Mitral/fisiologia , Animais , Colágeno/fisiologia , Elasticidade , Precondicionamento Isquêmico Miocárdico/instrumentação , Precondicionamento Isquêmico Miocárdico/métodos , Suínos , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...